Nostalgia Drag Races Australia





imageedit_5_3949838586

Website Investments

Nostalgia Drag Races Australia

Car Race - Performance Chip - Performance Parts - Performance Car

Air Intake - Car Tune - Track Performance - High Performance






Chips 2020

RRP $299.99

Click on the Google Preview image above to read some pages of this book!

The chips in present-day cell phones already contain billions of sub-100-nanometer transistors. By 2020, however, we will see systems-on-chips with trillions of 10-nanometer transistors. But this will be the end of the miniaturization, because yet smaller transistors, containing just a few control atoms, are subject to statisticalfluctuations and thus no longer useful. We also need to worry about a potential energy crisis, because in less than five years from now, with current chip technology, the internet alone would consume the total global electrical power!

This book presents a new, sustainable roadmap towards ultra-low-energy (femto-Joule), high-performance electronics. The focus is on the energy-efficiency of the various chip functions: sensing, processing, and communication, in a top-down spirit involving new architectures such as silicon brains, ultra-low-voltage circuits, energy harvesting, and 3D silicon technologies. Recognized world leaders from industry and from the research community share their views of this nanoelectronics future. They discuss, among other things, ubiquitous communication based on mobile companions, health and care supported by autonomous implants and by personal carebots, safe and efficient mobility assisted by co-pilots equipped with intelligent micro-electromechanical systems, and internet-based education for a billionpeople from kindergarden to retirement. This book should help and interest all those who will have to make decisions associated with future electronics: students, graduates, educators, and researchers, as well as managers, investors, and policy makers.

This book presents a new, sustainable roadmap towards ultra-low-energy (femto-Joule), high-performance electronics. The focus is on the energy-efficiency of the various chip functions: sensing, processing, and communication, in a top-down spirit involving new architectures such as silicon brains, ultra-low-voltage circuits, energy harvesting, and 3D silicon technologies. Recognized world leaders from industry and from the research community share their views of this nanoelectronics future. They discuss, among other things, ubiquitous communication based on mobile companions, health and care supported by autonomous implants and by personal carebots, safe and efficient mobility assisted by co-pilots equipped with intelligent micro-electromechanical systems, and internet-based education for a billionpeople from kindergarden to retirement. This book should help and interest all those who will have to make decisions associated with future electronics: students, graduates, educators, and researchers, as well as managers, investors, and policy makers."


Multichip Module Technologies And Alternatives

RRP $80.00

Click on the Google Preview image above to read some pages of this book!

Far from being the passive containers for semiconductor devices of the past, the packages in today's high performance computers pose numerous challenges in interconnecting, powering, cooling and protecting devices. While semiconductor circuit performance measured in picoseconds continues to improve, computer performance is expected to be in nanoseconds for the rest of this century -a factor of 1000 difference between on-chip and off-chip performance which is attributable to losses associated with the package. Thus the package, which interconnects all the chips to form a particular function such as a central processor, is likely to set the limits on how far computers can evolve. Multichip packaging, which can relax these limits and also improve the reliability and cost at the systems level, is expected to be the basis of all advanced computers in the future. In addition, since this technology allows chips to be spaced more closely, in less space and with less weight, it has the added advantage of being useful in portable consumer electronics as well as in medical, aerospace, automotive and telecommunications products. The multichip technologies with which these applications can be addressed are many. They range from ceramics to polymer-metal thin films to printed wiring boards for interconnections; flip chip, TAB or wire bond for chip-to-substrate connections; and air or water cooling for the removal of heat.


Conceptual Design Of Multichip Modules And Systems

RRP $68.00

Click on the Google Preview image above to read some pages of this book!

Conceptual Design of Multichip Modules and Systems treats activities which take place at the conceptual and specification level of the design of complex multichip systems. These activities include the formalization of design knowledge (information modeling), tradeoff analysis, partitioning, and decision process capture. All of these functions occur prior to the traditional CAD activities of synthesis and physical design.
Inherent in the design of electronic modules are tradeoffs which must be understood before feasible technology, material, process, and partitioning choices can be selected. The lack of a complete set of technology information is an especially serious problem in the packaging and interconnect field since the number of technologies, process, and materials is substantial and selecting optimums is arduous and non-trivial if one truly wants a balance in cost and performance. Numerous tradeoff and design decisions have to be made intelligently and quickly at the beginning of the design cycle before physical design work begins. These critical decisions, made within the first 10% of the total design cycle, ultimately define up to 80% of the final product cost.
Conceptual Design of Multichip Modules and Systems lays the groundwork for concurrent estimation level analysis including size, routing, electrical performance, thermal performance, cost, reliability, manufacturability, and testing. It will be useful both as a reference for system designers and as a text for those wishing to gain a perspective on the nature of packaging and interconnect design, concurrent engineering, computer-aided design, and system synthesis.


Handbook Of Academic Performance

RRP $382.99

Click on the Google Preview image above to read some pages of this book!

In this book, the authors gather and present current research in the study of the predictors, learning strategies and influences of gender on academic performance. Topics discussed include the gender effect on academic results and whether personality is a factor; the consequences of evening preference of adolescents on school achievement; performance standards in higher education; developments in the measure of intelligence; disciplinary consequence effects on the achievement of students with disabilities; teacher and student ethnicity in Texas elementary schools; and a study of gender and ethnic differences and success in the enrolment of advanced placement courses.


Vlsi: Systems On A Chip

RRP $29.99

Click on the Google Preview image above to read some pages of this book!

For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems.



Search

Nostalgia Drag Races Australia Articles

Car Race Performance Chip Performance Parts Performance Car
Air Intake Car Tune Track Performance High Performance

Nostalgia Drag Races Australia Books

Car Race Performance Chip Performance Parts Performance Car
Air Intake Car Tune Track Performance High Performance

Nostalgia Drag Races Australia





imageedit_5_3949838586

Website Investments